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The conductivity and thermal conductivity of Cs and Rb are calculated in
the liquid phase and in the region between the plasma (gas) and the liquid
states. The last area is located at the temperatures higher than the critical
one, near the critical point. The Ziman formalism originated from the
liquid metal theory was used for the calculations. The results of present
calculations were compared with available experiments and calculations of
other researchers. It was found that the liquid state formalism can be
applied to expanded liquid Cs and Rb at densities higher than the critical
one, but another type of models is necessary at lower densities.

Keywords: liquid metals; Ziman theory; liquid–plasma transition

1. Introduction

At the present time the main problem in describing the electronic transport
coefficients of metals (conductivity and thermal conductivity) is the region between
the rarefied gaseous (plasma) phase and the dense liquid or fluid state. The critical
point is also located in this region. Near the critical point, at temperatures higher
than the critical one, the values of the transport coefficients increase from gaseous to
metallic values. This phenomenon is frequently referred to as the pressure ionisation
or the metal–non-metal transition [1–4]. The increase in the transport coefficients will
also be referred to as the plasma–liquid transition (note that it is not the
thermodynamic phase transition).

There are several theoretical approaches to the description of the coefficients in
this region. These are the phenomenological models [1,2], the generalised chemical
models (GCMs) [3,4] and the so-called ab initio simulations [5,6]. In the frame of
GCM a substance is considered as a mixture of positive ions, atoms and electrons.
But the validity of GCMs is limited from above by some density because of the
degeneracy of the electrons and enhanced inter-particle interaction as a consequence
of the ionisation. The ab initio simulations are based on the density functional
theory. The models with ab initio simulations usually consider a substance as a two-
component mixture of positive ions and free electrons. The ions consist of the
nucleus and core electrons. The ions and free electrons interact by means of some
pseudo-potential. Sometimes a substance can consist of the electrons and bare nuclei
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within these models. Ab initio approaches successfully describe the region of solid
state, liquids and dense fluids, but they fail to reproduce correct ionisation degree at
gaseous phase. Phenomenological models are specially constructed to describe the
increase in electrical conductivity (and other coefficients) in the vicinity of the critical
point.

Various properties of the alkali metals near the critical point are studied more
frequently than for non-alkali ones because they have relatively low critical
temperatures (the critical parameters are denoted by the index ‘c’). There are
many wide-ranged measurements of the thermophysical properties of alkali metals
under high temperatures (see [1–4] for references). In gaseous phase the alkali metals,
i.e. Na, Cs, Rb, Li, are weakly ionised plasma consisting of the neutrals (atoms), the
positive single-charged ions and the electrons. The atoms can form dimers and
clusters, which also are probably ionised. The presence of clusters makes the number
of effective scattering centres smaller for electrons. So GCMs that take into account
this effect, can explain the increase in conductivity in alkali metals up to the
densities �0.5�c [3,4]. (for Cs Tc¼ 1938K or Tc¼ 1924K, �c¼ 0.38 g cm�3; for Rb
Tc¼ 2017K, �c¼ 0.29 g cm�3 [4,7]). But at higher densities, as we mentioned above,
these models cannot describe the interaction between particles correctly.

At the liquid densities near the melting line there are many models calculating the
properties of metals. The most advanced of them are the ab initio models mentioned
above. They give very accurate description of physical properties at the solid state
and near the melting line. At the density lowering they are not so accurate because of
the problems with choice of pseudo-potentials and exchange-correlation functional
[5,6]. There are also more simple models constructed on the basis of the Ziman (or
Ziman–Faber) formalism [8], which was generalised for non-zero temperatures. To
date these models have been successfully applied to the various thermophysical
properties of alkali and non-alkali metals [9–11]. They are even used to describe
possible structure transition in liquid Cs [12]. But their application is limited from
below by relatively high densities [13] (approximately �� 2�c). The limitation
originated from several reasons. Ziman theory considers the electrons as a nearly free
degenerated gas, which is weakly scattered by the ion component. That is, the mean
free path of the electrons must be much greater than the average distance between
the ions [4,8]. So the scattering process can be considered in the first Born
approximation (see following section). When a metal expands, this condition is
violated because of the recombination of charges and because of the increase in the
average distance between the heavy particles. In an expanded medium the electrons
are scattered by neutral particles as well as ions. Therefore, some ionic composition
models are necessary together with the models of the transport coefficients
themselves.

In the case of alkali metals there is an indication [4,14] that near the critical point
the substance is fully ionised just like in the liquid phase. It was shown that one of the
local pseudo-potentials, [15], can be successfully used in the liquid phase of alkali
metals [16] as well as non-alkali ones [17]. If the alkali metal is fully ionised then the
ratio of the temperature to the Fermi energy of free electron gas at the critical
parameters in alkali metals is �0.2. Therefore, the electron gas is still degenerated.
So, it is interesting to apply the Ziman-type model to the description of the behaviour
of transport coefficients of alkali metals near the critical point and compare the
results with available wide-range measurements for Cs and Rb [14,18,19].
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The article is organised as follows. The relations for transport coefficients

calculation are presented the following section. Section 3 is devoted to the

description of results and comparison with calculations and measurements of

others researches.

2. Theoretical relations

To calculate the electronic transport coefficients it is possible to introduce so-called

the relaxation time. This time coincides with a mean free time for the gases. The

Ziman formalism derives the relaxation time for the liquid and the solid state of

metals [8]. A metal is considered as the mixture of two components: the positive ions

with fixed charge Zi and the free electrons. The positive ion number density is ni, the

electron number density is ne (ne¼Zini) and the mass density is �. The temperature is

denoted as T. The interaction between two components is described by some pseudo-

potential. The last object defines the relaxation time too. The relaxation time � is

expressed as (SI units are used in the formulae):

1

�
¼

m2
e

12�3�h3Zi

Z 2k

0

SiiðxÞ
~weiðxÞ

DðxÞ

����
����2x3 dx: ð1Þ

In (1) k is the wave vector, ~weiðkÞ is the Fourier-transform of the pseudo-potential

weiðrÞ mentioned above, D(k) is the static dielectric function (permittivity), SiiðkÞ is

the ion–ion structure factor. The energy of a free electron is " ¼ �h2k2=ð2meÞ. Formula

(1) is obtained using the first Born approximation. It is known that the relaxation

time in Born approximation is correct if �e(ni)
1/3
� 1 (or at least �e(ni)

1/3
� 10), where

�e is the mean free path of conduction electrons [4]. The mean free path can be

estimated when the conductivity is known. (If the electrons are degenerated then the

conductivity �� nee
2�/me� nee

2�e/(mehui), where hui is the average electron velocity.

At T¼ 0 hui ¼ uF, uF is the velocity at Fermi surface.) We will check whether the

condition �e(ni)
1/3
� 1 is true when the results are considered.

In the general case it is necessary to use the Kubo–Greenwood formula, free of

any approximation. Therefore, this approach is formally exact. That is why it is used

in ab initio simulations [5,6]. But the application of any approaches mentioned above

to the definition of the relaxation time or conductivity requires the knowledge of

some parameters. In the case of ab initio approaches to obtain the model parameters

one needs to make averaging with exact density matrix. The averaging, in turn,

requires the great computational efforts. In the case of (1) these parameters are more

simple – SiiðkÞ, D(k), ~weiðkÞ, Zi.
If the relaxation time is known then one can calculate the transport coefficients

(� is the electrical conductivity, St is the thermopower, � is the thermal conductivity)

from the following relations [4]:

� ¼ �
2jej2

ffiffiffiffiffiffiffiffi
2me

p

3�2�h3
I3=2, St ¼

1

jejT
��

I5=2
I3=2

� �
,

� ¼
2
ffiffiffiffiffiffiffiffi
2me

p

3�2�h3T
�I7=2 þ

I5=2
� �2
I3=2

 !
, In ¼

Z 1
0

"�ð"Þ
@f0
@"

d":

ð2Þ
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Here f0 is the Fermi-Dirac distribution function, � is the chemical potential for
an ideal electron gas.

As far as the relaxation time is given by (1) then it is possible to calculate the
transport coefficients according to formulae (2) for given temperatures and densities.
The time � is defined by means of the electron–ion pseudo-potential weiðrÞ and the
ion–ion structure factor Sii(k). The structure factor is unambiguously connected
with the pair correlation function gii(r) by the Fourier-transform: SiiðkÞ ¼ 1þ
4�ni

R1
0 ð gðrÞ � 1Þr2dr. There are many techniques to calculate gii(r) and Sii(k) if the

effective ion–ion potential is known. Thus, first we should calculate the effective ion–
ion potential. Local ion–ion pseudo-potential UiiðrÞ can be expressed by means of
~weiðkÞ and the electron linear-response function 	ðkÞ in the second order of the
perturbation theory [4,8,17]. Its Fourier-transform is as follows:

~UiiðkÞ ¼
Zijej

2

"0k2
þ 	ðkÞjweiðkÞj

2: ð3Þ

Here "0 is SI constant. The inverse Fourier-transform of ~UeiðkÞ gives the effective
ion–ion potential UiiðrÞ.

We should note that the ion component in metals under conditions in hand is
non-degenerated. It obeys the classical statistics. If the interaction potential for
classical system is known then it is possible to calculate its g(r) and S(k) by several
ways. The Ornstein–Zernike equation and integral equation theory of liquids were
used in [16,17] for this purpose. In this work the NVT Metropolis Monte-Carlo
simulations [20,21] with 1000 particles was applied to calculate gii(r) and Sii(k) for
every thermodynamic state. At liquid state, Sii(k) can be measured. The comparison
of measured and calculated structure factors are given below.

One can see that all the parameters mentioned above (excluding response
functions) are defined by weiðrÞ. We used the electron–ion pseudo-potential of
Fiolhais et al. [15].

weiðrÞ ¼ �
Zijej

2

4�"0r0

1

x
1� ð1þ 
xÞe��x½ � � Ae�x

� �
, x ¼

r

r0


 ¼
�3 � 2�

4ð�2 � 1Þ
, A ¼ �2=2� �
:

ð4Þ

Expression (4) is dependent on two parameters – r0 and �. In [15] there are two
possible choices of parameters – ‘universal’ and ‘individual’. ‘Universal’ parameters:
for Cs r0¼ 0.919aB, �¼ 2.692 (aB is the Bohr radius); for Rb r0¼ 0.823aB, �¼ 2.749.
Individual parameters: for Cs r0¼ 0.848aB, �¼ 3.138; for Rb r0¼ 0.76aB, �¼ 3.197.
In [16] the universal parameters were chosen to obtain the best agreement between
calculated and measured structure factors of alkali metals. In [17] both kinds of
parameters were used for Sii(q) of Fe, Co, Ni. We also considered both variants of r0
and �. We indicate below what variant is better on the basis of the comparison with
the measurements.

Potential (4) is constructed in accordance with the general theory of pseudo-
potentials, developed since 1960s [22]. It belongs to the class of evanescent core
potentials [15], i.e. when r!1 it tends to Coulomb potential; but when r! 0 the
interaction is described by some function which is finite at r¼ 0 (in contrast to
Coulomb potential). This function arises from the contribution of ion core electrons
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into the potential, so it should quickly tends to zero when r!1. For reliable
calculation of different properties of a metal the whole potential should be a smooth
function. The first pseudo-potential of this kind was proposed by Hellmann [23] for
potassium. One more analogous potential was derived by Krasko and Gurskii [24].
(The last one can be obtained from (4) if 
 ¼ 0, � ¼ 1. The main improvements of
the evanescent core potential (4) are that it satisfies some general constraints of the
pseudo-potential theory (see [15] for details).) These improvements give rise to more
exact calculation of different properties of a metal.

As mentioned above, the ionic composition changes when the density decreases.
If a metal has multiple-charged positive ions in liquid phase, then this effect can be
important even when this metal still consists of only charged components. For
example Al has ions with charge þ3 in liquid phase (at densities �2.7 g cm�3). At
gaseous state (�� 0.1 g cm�3) the neutrals dominate. So there are intermediate
densities, where Al is still fully ionised but consists of several kinds of ions. In this
case one needs to use a composition model [25,26]. The alkali metals have only single
charged positive ions. Near critical point they are possibly still fully ionised [4,14]. So
we can set the ion charge as Zi¼ 1.

Let us consider the last, but not least parameters – D(k) and 	ðkÞ. The static
dielectric function entering (1) can be written as [4,8]:

DðkÞ ¼ 1þ ð1� GðkÞÞ	0ðkÞjej
2=ð"0k

2Þ,

	0ðkÞ ¼
kFme

2�2�h2
1þ

1� x

2x
ln

1þ x

1� x

����
����

� 	
, x ¼ k=ð2kFÞ, kF ¼ ð3�

2neÞ
1=3:

ð5Þ

In (5) ne is the electron particle concentration, 	0ðkÞ is the Lindhard response
function for non-interacting degenerated electron gas [4,8], G(k) is the local field
correction, which accounts for the interaction between the electrons. There are many
different forms of G(q), which are usually referred to the names of authors of
corresponding model, i.e. Hubbard–Sham, Vashista–Singwi, Taylor, Ichimaru–
Utsumi, etc. (see [4,9,10] for references). Here we tested various forms of G(q) and
found that the local field corrections offered by Ichimaru and Utsumi [27] and Hellal
et al. [28] together with the potential [15] can give the best agreement between the
calculation and available measurements of conductivity as well as of structure factors
of Rb and Cs. So now, we use these G(q).

The response function 	ðkÞ entering the effective ion–ion potential in (3) is also
dependent on G(q):

	ðkÞ ¼
	0ðkÞvðkÞ

1� ð1� GðkÞÞ	0ðkÞvðkÞ
, vðkÞ ¼

jej2

"0k2
: ð6Þ

Now we have all necessary parameters to calculate the transport coefficients.

3. Results

Let us start with the structure factors data. There are many measurements of
structure factors of liquid metals near melting (by means of elastic X-ray or neutron
scattering). Almost 30 years ago many of these data were accumulated in the well-
known monograph written by Waseda [29]. Now they can be downloaded via
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internet – http://www.tagen.tohoku.ac.jp/general/building/iamp/database/scm/. Up

to now these structural data have been described by variety of models and theories.

But the maximum temperatures achieved in experiments presented in [29] are near

the melting line and far from the critical region. To study the thermophysical

properties of a substance in a wider range, the measurements under higher

temperatures are necessary. The critical points of alkali metals are located at lower

temperatures with respect to the other metals. So, currently we have several sets of

structure factor measurements, which are spread up to the critical temperatures. For

example there are measurements [30,31] for Cs and [32] for Rb. The initial states (i.e.

the densities and temperatures) of both these experiments are located near the

melting line, just like in [29], and the results are in agreement with Waseda data.
We have carried out the corresponding calculations of structure factors with

potential (3) and have compared the results with the measurements for Cs in Figure 1

and for Rb in Figure 2. In Figure 1 empty circles presents the structure factors for 5

thermodynamics states of Cs measured in [30]. In Figure 2 empty circles presents the

structure factors for 5 thermodynamics states of Rb measured in [32]. Our

calculations have shown that individual parameters of Fiolhais et al. potential [15]

can give better agreement with the measurements than universal ones. Consequently,

we present our results with individual parameters (i.e. r0¼ 0.848aB, �¼ 3.138 for Cs

and r0¼ 0.760aB, �¼ 3.197 for Rb). We have also found that at relatively low

temperatures near melting line both G(q) obtained by Ichimaru and Utsumi [27] and

by Hellal et al. [28] can describe the experimental data. But at higher temperatures

(especially near the critical point) G(q) obtained by Ichimaru–Utsumi is better. As

one can see in Figures 1 and 2 the calculated data are in agreement with the measured

Figure 1. The structure factors of Cs at various temperatures. Empty circles – the
measurements of Winter, Hensel et al. [30]. Lines – our calculations with Fiolhais et al.
potential [15] (individual parameters), local field correction of Ichimaru and Utsumi [27].
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structure factors. The disagreement is at small wave vectors for the states near the
critical points. But all measurements of structure factors is always limited by some
kmin, i.e. k4kmin [30–32]. Consequently the values of S(k) at k¼ 0 in measurements
are always obtained by extrapolation of experimental data. So it is difficult to find

real error of our simulations relative to the measurements at small k. Now we move
on to the transport coefficients.

The conductivity of expanded liquid Cs has been earlier studied by means of the
Ziman formalism [4,33]. The results were compared with the measurements of
electrical conductivity, which were also obtained in [30]. In [33] others pseudo-
potentials (Ashcroft-empty-core potential, Heine–Abarenkov potential, Hasegawa
potential) were used. These potentials have at least one free parameter. For Ashcroft
empty-core potential this parameter is the characteristic radius. The free parameters
can be fitted to describe some property of a metal. This fitting was used in [33] to
obtain the conductivity corresponding to the experimental value near melting line.
But the conductivity calculated in [33] was in disagreement with the measured data
when the density approaches the critical value. The main reason for this

disagreement, as mentioned above, is possible inapplicability of Ziman formalism
and nearly free electron approach at the density lowering. A minor reason may be
concluded in pseudo-potentials, which was specially fitted in [33] to describe the
conductivity at melting. Here we used the pseudo-potential [15] without fitting.

Figure 2. The same as in Figure 1 but for Rb. Empty circles – the measurements of Matsuda
et al. [32].
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The results of our calculations of Cs conductivity are presented in Table 1. The data

of Table 1 show that our calculations are in better agreement with the experiment

than the results of [33]. But the difference also increases while the density approaches

the critical point. The maximum error in measurements [30] was estimated as 20%.

The maximum difference in our conductivity relative to the experimental data is 26%

at T¼ 1923K. The electron gas is still degenerated, although at T¼ 1923K the ratio

of Fermi energy to the temperature is 4.24. The condition �e(ni)
1/341 is fulfilled for

every state, but at T¼ 1923K this ratio is only 2.5.
Analogous results for Rb are presented in Table 2. We have made comparison

with the experimental data [19]. Their maximum relative error was estimated as 20%.

We have also considered the results of ab initio simulations [6], which are in

agreement with the measurements for all range. Qualitatively we have the same

situation as for Cs.

Table 2. The conductivity of Rb in liquid phase. Experiment: [19], Calculation2:
ab initio simulation [6]. Our data correspond to the individual parameters of
Fiolhais et al. potential [15].

T (K) � (g cm�3)
Experiment
� (� cm)�1

Calculation2
� (� cm)�1

Our data
� (� cm)�1 EF (kBT )

312.46 1.4785 4.440� 104 – 4.41� 104 64.4
373 1.46 – 3.597� 104 3.68� 104 53.5
400 1.4495 3.335� 104 – 3.52� 104 49.6
573 1.43 – 2.681� 104 2.8� 104 34.3
600 1.3603 2.018� 104 – 2.16� 104 31.7
900 1.2261 1.135� 104 – 1.17� 104 19.7
973 1.26 – 1.107� 104 1.13� 104 18.6
1000 1.1826 9.58� 103 – 1.11� 104 17.3
1173 1.15 – 7.52� 103 8.01� 103 14.5
1200 1.0908 6.91� 103 – 7.35� 103 13.7
1500 0.9308 4.21� 103 – 4.62� 103 9.7
1673 0.88 – 6.2� 102 3.61� 103 8.5
1700 0.8041 2.92� 103 – 3.25� 103 7.9
1900 0.6385 1.90� 103 – 2.21� 103 6.0

Table 1. The conductivity of Cs in liquid phase. Experiment: the data of [30,33].
Calculation1: the data of [33]. Our data correspond to the individual parameters
of Fiolhais et al. potential [15].

T (K) � (g cm�3)
Experiment
� (� cm)�1

Calculation1
� (� cm)�1

Our data
� (� cm)�1 EF (kBT)

373 1.800 22,196 22,200 2.01� 104 46.0
773 1.567 10,200 10,100 1.02� 104 20.2
973 1.452 7800 8060 8.01� 103 15.3
1173 1.332 5070 5940 6.21� 103 12.0
1373 1.209 3550 4940 4.32� 103 9.6
1673 0.956 1170 2760 1.33� 103 6.7
1923 0.590 500 1370 6.26� 103 4.24
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Now we will try to apply our calculations to the region of plasma–liquid

transition. In Figure 3 there are the results of electrical conductivity measure-

ments [14,18] for Cs at T¼ 2115K. There are also the results of calculations

according to different approaches. The phenomenological model [2] qualitatively

reproduces the conductivity increase but it fails below the critical density. In
contrast, the GCM [3] is in agreement with the experiment below the critical

densities, but it fails at the densities �40.3 g cm�3. Our calculations are in good

agreement with the measurements starting from the critical density and higher.

Below the critical density our model gives rise to overestimated conductivity. The

condition �e(ni)
1/341 is violated at �� �c. At the critical point �e(ni)

1/3
¼ 1.2.

Therefore, our model is inapplicable at lower densities. One can also see that

none of the models in hand can describe the behaviour of the conductivity in the

transition region.
The situation is analogous for Rb. Corresponding results are presented in

Figure 4. One can see that there is also no model, which could describe the

conductivity at wide-range variation of the density. For Rb the ratio is �e(ni)
1/3
¼ 1.1

at the critical density. Therefore, the conclusion about inapplicability of the present

model at lower densities is valid for Rb too.
With regard to the other two transport coefficients (i.e. the thermal conductivity

and the thermopower), we can state that high-temperature measurements for them

are absent in the vicinity of the critical point. (It is true almost for any pure metals,
excluding Hg.) Consequently, the calculations are also rarely presented for these

coefficients. So, we have no other results for comparison. But we know that

according to the general theory these coefficients also have analogous transition

from gaseous to metallic value. So, it is interesting to check the Wiedemann–Franz

ratio L: �¼ �*T*L*(kB/e)
2. The thermal conductivity for Cs was calculated at the

same temperature T¼ 2115K to obtain L. At high densities it was just similar to

the liquid state i.e. L	 3.29. But near the critical point it was diminishing. It may be

. . . . . . .
(          )

Figure 3. Cs conductivity near the critical point at isotherm T¼ 2115K. Experiment – [14,18],
Likalter – [2], GCM – [3].
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the sign of transition from metallic to gaseous state. Corresponding results are
presented in Figure 5.

We should note that the GCM approach offered in [3] is not the only one
possible. Now there are many variants of GCMs. Some of them describe various
properties of metallic plasma correctly from gaseous densities up to critical ones [34].
More advanced variant of GCM was described in [35] to calculate thermodynamical,
transport and optical properties of plasma of alkali metals. But these calculations are
also limited from above by relatively low densities. Consequently, there is no model
describing the transport properties in all density range. But it is possible to use one
model (for example, some GCM) for the densities below the critical point and
another one (of Ziman type) for the higher densities.

. . . . . . . . .

(           )

Figure 4. The same as in Figure 3, but for Rb at T¼ 2198K.

Figure 5. The Wiedemann–Franz ratio for Cs at T¼ 2115K.
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